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APPLICATION OF THE DOUBLE SPHERICAL, HARMONICS METHOD
TO THE ONE-DIMENSIONAL RADTATION-TRANSFER EQUATION
By Leo G. Le Sage

Ames Research Center
Moffett Field, Calif.

SUMMARY
/5670

The problem of the transport of thermal radiation through an absorbing
medium between parallel walls held at fixed different temperatures is con-
sidered. The method of solution is based on a procedure introduced by Yvon
in the analysis of monoenergetic neutron transport and employs double spheri-
cal harmonics expansions of the specific intensity. Formulas for the energy
transport between the walls and the temperature distribution in the medium
are obtained for a simple approximation. Numerical results are obtained for
a more complicated approximation. The results are compared to previously

published values. X
RuvthHor

INTRODUCTION

There are many similarities between the mathematical description of the
transfer of radiation in a gas and the transfer of neutrons in a medium.
These have been discussed in reference 1, page 37. If certain simplifying
assumptions are made for both the neutron and the radiation-transfer equation,
then the two transfer equations have the same form.

For this reason the methods developed either for radiation or neutron
analysis can be applied to the other field. One procedure widely used in
neutron transport analysis is the so-called double spherical harmonics method
introduced by Yvon (ref. 2).

Yvon's method is a variation of the well-known, full-range spherical
harmonics approximation (see, e.g., ref. 1 or ref. 3). In this full-range
solution the angular distribution of the intensity is expanded in a series of
Legendre polynomials. The full-range results are known to be relatively
accurate in the interior of a large homogeneous medium where the specific
intensity is generally a slowly varying function of angle. At boundaries
between different media a discontinuity in the intensity occurs, and it is at
such points that large errors may arise. This is due to the difficulty in
expressing a discontinuous function in terms of a series of continuous
functions.



To improve the convergence of the solution at boundaries, Yvon followed
the procedure of considering separately the components of the radiation -
traveling in the positive and negative directions. Each component is expanded
in an independent series of Legendre polynomials. This allows the solution to
have discontinuities at the boundaries as demanded by the boundary conditions.
Thus the double spherical harmonics solution has been found to be more accu-
rate than the full-range result near discontinuities in a medium, or when
applied to optically thin media. Yvon's method, as presented in this paper,
is applicable only to one-dimensional problems.

Both Shiff and Ziering (ref. 4) and Bengston (ref. 5) have developed
Yvon's method and applied it to problems in neutron transport. In reference L4
the accuracy has been investigated in some detail. It is found, for example,
that for Milne's problem the double spherical harmonics approximation gives
better results than the full-range approximation of comparable complexity.

The extension of the double expansion procedure to two-dimensionsal problems
has also been considered by Shiff and Ziering (ref. 6).

It is the purpose of this paper to apply Yvon's method to the problem of
the plane absorbing layer of grey gas between absorbing and emitting walls at
fixed different temperatures. The walls are assumed to radiate isotropically
and to have an absorptivity of unity (i.e., black walls). First, reduction
of the integro-differential equation describing the physical situation to s
set of ordinary differential equations is illustrated. The boundary condi-
tions at the walls must be introduced to complete the solution of these
differential equations. Finally, calculations giving such quantities as the
energy flux across the gas slab and the temperature distribution through that
glab are presented and compared with previously published values.

SYMBOLS
+ Lt . s . .
A LB coefficients in equation (A18)
AT ,B” coefficients in equation (Al9)
ay coefficient in equation (30)
an coefficient in equation (15)
Tnshy coefficients in equation (16)
g irl
n a1

I(g,u) specific intensity per unit area, time, solid angle

In(e) coefficients in the series expansion of I(&,u) (see egs. (7) and

(8))

k coefficient in exponent (see discussion preceding eq. (13))




o(E)

geometric thickness of plane layer {see fig. 1)
Legendre polynomial of the first kind of order n
rate of energy transport per unit area
reflectivity

temperature, absolute

nonsingular part of the Legendre function of the second kind of
order n

geometric depth in absorbing layer

emission function (see eqg. (35))

emissivity

angle between ray and normal to surface (see fig. 1)

local absorption coefficient, per unit mass

1

k

cos 6

optical depth in absorbing layer (dt = pk dx)
local density of absorbing medium
Stefan-Boltzmann constant

dimensionless form of emission function (see eq. (36))

Subscripts

L
L evaluated at ¢ = Er, =U/\ pk dx
o]

N maximum value of n in expansion

n order of Legendre polynomial or functiocn

o evaluated at ¢ =0



Superscripts

+ right-going (¢ -increasing) quantity

- left-going (&-decreasing) quantity

GENERAL SOLUTION
Integro-Differential Equation

The one-dimensional, time-independent, radiation-transfer equation for

a grey gas in local thermodynamic equilibrium is normally written (see ref. 1)
as

HLlrb) 1 1) = HEL (1)

The specific intensity, I(x,u), is the energy flux per unit area, time,
and solid angle, at point x in direction u. (For a more detailed discus-
sion of specific intensity consult either reference 1 or reference 7.) The
symbols T, o, and x are, respectively, the local temperature, Stefan-
Boltzmann constant, and the geometric length. Mass absorption coefficient
and density are designated by « and p, and €6 (= cos™ u) is the angle
between the direction of radiation and the x axis (refer to fig. 1 for the
coordinate system and the geometry).

The optical depth £ of the medium is defined in terms of p, K, and x
by the following equation.

dE = pk dx

Equation (l) can then be written in terms of the optical depth as

4
Hgli(d_égﬂ+ I(E,un) =GT(—KE‘)— (2)

The above formulation of the grey gas radlation-transfer equation is
based on the assumption of local thermodynamic equilibrium. Another formula-
tion, corresponding to perfect isotropic scattering, is shown in reference 1,
page 32, to be mathematically equivalent. This equation is

¥ &(dgéﬂ + I(é,u) = %fl I(E:H)d# (3)

-1
There are two unknowns in equation (2), T(¢) and I(t,u). In equation (3)

the only unknown is I(f&,u), and the equation is now an integro-differential
equation.

L




i Equation (3) has the came form as the energy ilndependent, one-dimensional
neutron-transport equation for a nonabsorbing medium. Yvon's method will be
applied to equation (3). In the problem treated here, the walls are held at
different fixed temperatures. The mathematical relation between the specific

intensity I(g,p) and the temperature T(g) is obtained by equating the right
sides of equations (2) and (3).

Application of Yvon's Method

In the application of Yvon's method the components of the radiation
traveling in the positive and negative directions are considered separately.
Bach of these components is then expanded in a series of Legendre polynomialsl
and substituted into the integro-differential equation. A set of ordinary
differential equations is obtained. The following notation will be used to
differentiate between the positive and negative components of the radiation.

I (g,1) 0< w<l
I(E)U) = _ ()4)
I7(E,nm) -l< w<oO

It will be necessary tc use one of the recurrence formulas for Legendre
polynomials as well as the orthogonality conditions for the polynomials which
apply to the ranges O < u <1 and -1 < p <O0. These are, respectively,

(2n + 1)P1(y)P,(y) = (n + L)Ppyy(y) + 0P (¥) (5)
1 1
f P (2n - 1)Ppon - 1)dp = 5o T Omm
O
(6)
© 1
f Pn(Qp. + l)Pm(EH + 1)dp = 5m T 1 81]111
-1

where Pn(y) is tt~ Legendre polynomial of order n with argument y and
where ©Opy 1s the Kronecker delta defined as follows.

nm

1Yvon's method is also called the double spherical harmonics method
although the Legendre polynomials are used in this paper instead of the
spherical harmonics. For cases where O dis the only angle variable, the
spherical harmonics and the Legendre polynomials are proportional.



Equations (6) are obtained directly from the normal orthogonality
formulas for the Legendre polynomials by a simple transformation of variables.

The procedure by which a set of ordinary first-order differential
equations is obtained from the integro-differential equation has been
included in other papers (refs. 2, 4, and 5) and, therefore, will,be only
briefly outlined below. The general method is first to expand I (&,u1) and
I7(&,1) in infinite series of the polynomials Pp(2u - 1) and Pp(2p + 1).
These series are then substituted into equation (3 and after some rearrange-
ment it is possible to equate the coefficilents of like terms in the series
which appear on both sides of the resulting equation. The coefficients con-
tain first derivatives of Ip () and T (&). Therefore, by equating each
pair of terms of the series, we obtain one ordinary differential equation.

The expansions of the specific intensities are

I (&,p) =j{:(2n + 1)Pa(2n - 1)I, () (7
n

I7(&,n) =:E:(2n + L)P,(2n + 1)I,7(¢) (8)
n

The (2n + 1) factor is included in equations (7) and (8) for convenience in
later manipulations.

Equations (7) and (8) are substituted into equation (3). Employing the
orthogonality relations (egs. (6)) and the recurrence formula (eq. (5)), the
following equations are obtained.

+ +

art_ ar,, ar,
%ZPn(Qp - 1){]{1 drg =+ (n+ 1) d; + (2n + 1) }

n
+Z (en + 1)P (20 - l)In+ - %(IO— + IO+> =0 (9)
n

-

aI;_, Ty, .
E{:Pn(EH + l)[n "jiz—-'+ (n+ 1) it

Z(2n+l (2u+1)1'_%<10++10‘>=o (10)

n

ar
L _(on+ 1) 2}

n

It is to be understood that In+ and Iy~ are always functions of the optical

depth €. The coefficilents In+ and I, are taken to be zero when n < O.
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The following two differential equations are obtained by equating to zero the
. coefficients of P (2p - 1) and P(2u + 1) in eguations (9) and (10).

a [ _+ + + + + -
x Lnln'l + (en + 1)In + (n+ l)In+1J +2(en + 1)I, - <i° + I > 80 = O

for O<pc<l (11)

a - - - + -
F |:nIn_l - (on + )T, + (n + l)In+l} + 2(en + 1)I, - <#O + I, ) 8po =0

N

for -l<u<O (12)

870 1s the Kronecker delta as defined previously.

+ —
In the double PN approximation it is assumed that I, and I, are
zero for n >N + 1. This is the same as assuming that the expansions for

+ -
I (¢,u) and I (t,u) (egs. (7) and (8)) contain only (N + 1) terms. For the
general case this is, of course, an approximation.

The problem now consists of solving the set of 2(N + 1) coupled ordinary
differential equation, represented by equations (11) and (12), subject to
specified boundary conditions. First, however, solutions of the differential
equations are obtained which ccntain undetermined constants. The boundary
conditions are used later to determine these constants.

Characteristic Determinant

Some information about the solutions of equations (11) and (12) can be
obtained from the characteristic determinant for these equations without
actually solving for the roots of that determinant. If the usual exponential
solution ekX is substituted into equations (11) and (12), the following
characteristic determinant is obtained.

1+ k -1 k 0 0 0
-1 1-k 0 k 0 0
k 0 6 + 3k 0 2k 0
0 k 0 6 - 3k 0 2k =0 (13)
0 0 2k 0 10 + 5k o)
0 0 o) 2k 0 10 - 5k




The equations were arranged in+order of increasing n with the I, and
In_ equations alternating, the I, before the I, .

By elementary operations eqguation (13) can be reduced to

7 + 2k 1 2k 0 0
1 7 - 2k 0 2k 0
2k 0 10 + 5k 0 3k
k? =0 (14)
0 2k 0 10 - 5k 0
0 0 3k 0 14 + Tk

Equation (14) shows there are two zero roots of the characteristic equation
(13). Zero is not a root of the determinant in equation (14) as can be
demonstrated by substitution of k = O into the determinant. Thus, there are
only two zero roots of equation (13) and these have been factored in

equation (14).

Each row of the determinant in equation (14) can now be divided by k.
Let A = 1/k. Each element of the resulting determinant is of the form
Aj st Nij where C;; are the elements of a positive definite matrix and
Ai% are the elements of a real symmetric matrix. Then by theorem 4L of
refer

ence 8 all the roots Ay are real.

Solution of the Differential Equations

It if now known that each solution of the 2(N + 1) differential equations
(i.e., In—) will consist of a constant and a linear term, and 2N exponential
terms with real exponents. The exponential terms are of the form

+ - .
gt o8/M (15)
and the constant and linear solutions are of the form
+ +
fn + hy € (16)

+ +
where the constants dn , fy , and hni are functions only of the particular

As- The solution for each of the 2(N + 1) values of Ini will be of the form




2N

I, = fnir + hnIg *_sznie—E/ki (17)

i=1

In the double PN approximation there are [2(N + l)]2 constants (i.e.,
dyt, £, and hy") and 2N values of the exponents A{ to be determined.
The first step in the solution is to substitute equations (15) and (16) into
the differential equations. Because of the coupling in the equations, enough
relations among the constants dni, fni, and h,* are obtained such that A
and all but 2(N + 1) of the constants can be determined. The details of this
solution, which is fairly complex algebraically, are contained in appendix A.
The boundary conditions are used to determine the remaining 2(N + 1) con-
stants. Application of the boundary conditions is discussed in the next
section.

N The prgcedure used in appendix A to obtain A; and the constants dnt,
fn, and h,” 1s somewhat different from the methods employed in references 2,
4, and 5. The present procedure, which is similar to that used in reference 3
for the solution of the differential equations obtained in the full-range
spherical harmonics problem, appears to offer some reduction in the complexity
of the solution for higher approximations. This reduction in complexity
results from the use of the recurrence formulas for the Legendre polynomials
to generate the values of dp~ from the preceding d;_, and d5_5- Also, the
use of the recurrence formulas leads directly to a polynomial (eq. A27)), the
roots of which are the 2N values of the exponents Aj.

APPLICATION OF BOUNDARY CONDITIONS

The problem of the plane absorbing layer of gas between absorbing and
emitting walls is to be considered. The walls are held at fixed different
temperatures and are assumed to be black. This assumption involves no loss
in generality since as shown, for example, in reference 9, the solutions for
the black wall and the grey wall cases are related. TFigure 1 shows the
geometry and the coordinate system.

The intensity of the radiation from an isotropically radiating black
wall at temperature T is UT4/K. The walls are at €& = O and & = £1,- Then

4
T
Ono = I+(O,u) =Z(2n + )P (2n - l)In+(O) (18)
n
GTL4 _ -
= T (&g,m) =z(2n + 1)Py(2p + 1)I, (&) (19)
n



The left sides of equations (18) and (19) are not functions of p. Therefore,
the terms In+(0) and I, (gL) must be zero for . > 1 since Pn are functions
of u for n >1. The boundary conditions are then

oTo*

= = I, (0) (20)
0=1I,(0), 1l<n<uN (21)
0?4 = 1,7 (eg) (22)
0=Iy(&), LlgngN (23)

+ -
so that 2(N + 1) equations in I, (0) and I, (&,) are obtained. Thus the
boundary conditions provide the correct number Of relations to evaluate the
2(N + 1) as yet undetermined constants.

For isotropically radiating walls, I+(O,u) and I_(EL;H) are constants
with respect to the angle variable u. It is mathematically possible to
obtain solutions to the problem when I (0,u) and I_(QL,u) are functions of
W. In this case the values of I,7(0) and I, (&) are determined from equa-
tions (18) and (19) and the orthogonality relations for the Legendre poly-
nomials. The physical meaning of such boundary conditions and their relation
to wall temperature has not been investigated and will not be considered again
in this paper.

PLANE ABSORBING LAYER-ENERGY FLUX AND TEMPERATURE

Energy Flux

The positive flux q+(§) and the negative flux g (&) are defined as the
total rates of energy transport per unit area in the positive and negative
directions, respectively. The expressions for these fluxes in terms of the
specific intensities are given in reference 10. They are

S
g (e) = 2ﬁfo T (g,u)u du (24)
(e) = 2 f_l I(e Wk du (25)
4 = ox SH)H
and °
a(e) = g"(&) - a7 (&) (26)

10




where q(&) is the local net value of the erergy flux. A net energy ilow in

>

1
the positive x direction corresponds to q(¢) > O.

It is possible to write q'(t) as a function of I,7(¢). Substitute
equation (7) into equation (24) and let up = (1/2)[Pi(2u - l) + Po(2u - 1)].
The orthogonality relation (eqg. (5)) gives

at(g) = n(L," + 17) (27)
and similarly
qa (&) =n(Is” - I17) (28)
and from equation (26)
a(e) = n(T," + I, - 1.7 + 1,7) (29)

Equations (A28) and (A7) through+(AlO are substituted into equation (29) to
get the flux 1n terms of ay, g, > and hg * (as defined in appendix A,
G5 () = ase, ()

Wi+

2N
’ +Zail_go+(7\i) + gl+(7\i) - go'(7\i) + gl'()\i)Je—g/.)\i (30)
i=1

Note that the linear term in equation (30) has disappeared. If equations
(A20), (A25), and (A26) are substituted into equation (30), the term inside
the brackets reduces to zero. Therefore

L

a= -3 ahg’ (31)

Since ho+ is not a function of £, the value of the energy flux is constant
with respect to position. This is a condition that must be true for the exact
solution and is, of course, desirable in any approximate soclution such as the
one being considered here. Note that ho™ is a function of both the order
of the approximation and the boundary conditions.

Temperature

At a point between the walls, the temperature and the specific intensity
are related by the following equation:
4
)

%f (e = SEL

14
-1

(32)

11



Equation (32) follows from equations (1) and (3). The left side of (32) can
be evaluated:

O
gqull(g,u>du - %U/\ T7(g,u)an + %L/\ll+(ﬁ,u)du (33)

-1 -1 e}

From equations (5) through (8) this is

%U/\II(E,u)du -

ST (34)
[ (5" w)

It is customary to define a function, B(g), the emission function, as

P

/
B(e) = om(e)* = 5 (T, + Io'> (35)

Heaslet and Fuller (ref. 9) have also introduced the function (&) defined
below.

(o) + a (&)
ole) - —2lel 7 1t (36)
q (tr) - a (0)  2[a(gg) - ¢ (0)]

The function @(g) can be considered as a normalized, dimensionless p(E).
The usefulness of the function @(g) is as follows. The problem is first
solved and @(g) calculated for black walls. ZFrom this value of @(g) it is
then possible, using the method of reference 9, to calculate B(g) for the

case with grey walls. This is equivalent to having the following boundary
conditions:

,"(0) = £ [eocTO4 + roq'(O):] (37)
1,7(0) = 0 (38)
I, (&) = j—l(- [eLGTL4 + qu”f(gL)} (39)
I: (&) =0 (40)

where €5 and € are the emissivities and rg and ry, are the reflectivities
of the left and right walls, respectively.

12




Double Py Approximation

This example, which involves only four differential equations and four
unknowns, is interesting since it is simple enough to be solved in terms of
an arbitrary optical thickness, £1,, of the absorbing layer. The differential
equations are

a /. - -

om0
?i% <IO+ + 3Il+> + 6Il+ =0 (42)

a - - -

i <Il - I, > + <IO - IO+> -0 (43)
d (1 - )+ o61," Ll
= I, -3I, )+6I,” =0 (44)

and the boundary conditions are equations (20) through (23) with N = 1. The
mathematics leading to the solution is lengthy but straightforward. The
results obtained are

T + - 4 4
B(¢) _ _2'(10 1o > o, + T
4

— - : + (&) (u5)
a~(en) - a7(0)  a(gp) - g'(0) 2(T " - T,%)

where ¢%(0) = oT,* and q(&p) = UTL4: and

2
o(t) = s (46)

< - g—L> [l (7 - uﬁ)e‘@ﬂ + <—2—2L§> PR e_ﬁég]

13



The normalized flux is r -
L +
_ 4 _ 3 o _ L < 1
a(31)-d'(0) @ (en)-aTlo) C ) ] +<  2)[e=te  AyeTREL
L - NEY 1f(7—%@kﬂﬁng

(47)
For the extreme values of gL, the normalized flux is
1, Er, << 1
-1 = (48)
q~(&,) - a*(0) L
Py >> 1

Equation (L6) nas the advantage of being a relatively simple expression for
the temperature distribution written in terms of an arbitrary optical thick-
ness. It is, of course, possible to determine the expression similar to
equation (46) for a higher approximation; but the complexity of the algebra
increases rapidly with higher approximations.

Double Ps Approximation

This particular approximation, which involves twelve differential equa-
tions and twelve unknowns, was chosen since it offered the possibility of a
substantial increase in accuracy over the double P; approximation. The
equations and boundary conditions are equations (11), (12), and (20) through
(23) with N = 5. The method of solution follows that outlined in the pre-
vious sections. Unlike the previous example, the problem was not solved in
terms of an arbitrary optical thickness. Instead, the problem was solved on
an electronic computer for different specific values of &r1,; therefore, only
numerical results are available for the double Ps approximation.

Discussion of Results

The normelized flux, -g/[q (&) - ¢7(0)1, for the double Py and the
double Ps approximations is given in teble I for different values of £y .
In reference 9 the problem of the plane absorbing layer was solved approxi-
mately by an integral equation approach; fluxes and temperature distributions
were obtained by an iterative procedure. The values of normalized flux from
reference 9 are also listed in table I for comparison. The maximum differ-
ence between any two comparable values in the table is less than 2 percent.

14




Values of the normalized flux are also plotied in figure 2, but because of
“the agreement among the values calculated by the different methods, only one
curve is plotted, and it represents all the methods to within the accuracy of
the graph.

The values from the double Ps approximation calculation and those from
the iterative calculation agree particularly well over most values of Ej
except for a slight divergence at £ = 10. Therefore, one is encouraged to
assume that the values calculated are approximately correct since these two
methods, one a differential equation method and one an integral equation
method, are quite dissimilar.

Figure 3 contains curves of m(g) vS. g/gL for the double P,;, double
Ps, and iterative calculations for values of gL from 0.1 to 10.0 The values
for the double Ps and the iterative calculations are in such close agree-
ment that only one curve representing both is plotted in figure 3. The maxi-
mum difference between these two curves is approximately 1 percent. It is
only necessary to plot @(g) for values from gL/z to g7, since p(E) is
antisymmetric about gL/e. The double P; curve (fig. 3) represents a cruder
approximation and deviates slightly from the other curves.

The agreement among the three methods is not as good for small values of
Er,- Figure 4 is a curve of @(g) vs. g/gL for &3 = 0.02. In this case the
double P, approximation is apparently failing to give a reasonably accurate
result. The double Ps result still agrees to within 5 percent with the
iterative result.

The temperature distributions from the double Ps approximation have
also been compared with the curves published in reference 11. The values for
these curves were obtained from a numerical solution of the integral equation
using a desk calculator. The values from reference 11 and those from the
double Ps calculation agree to within the accuracy to which the curves in
reference 11 can be read.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Aug. 6, 1964
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APPENDIX A
SOLUTION OF DIFFERENTIAL EQUATIONS
LINEAR AND CONSTANT PART OF SOLUTION

The solution for Ini was shown to be of the form of equation (17). To
get the rela}ions fmong the constants in the linear part of the solution the
function f,= + ™€ 1is substituted into equations (11) and (12). The
following equations are obtained:

hot + m* + £7 + 0T - £7 - hTE =0 (A1)
“hy” + hy + £y +hyTE - £.7 + nte =0 (A2)

and for n > 1

nhfiog + (2n + Lhyt 4 (n+ Dnpey + 2(2n + 1)(2," + byTE) = 0 (A3)

nhpoy - (2n + )by + (o + 1)hpey

+

2(en + 1)(f,” + b, e) =0 (Ak)

In equations (Al) through (A4) the constant parts and the parts involving
¢ are equated separately to zero. From (A3) and (AL)

n* =0 for n>1 (A5)

+

o =0 for n > 2 (46)

Then for n = 1, (A3) and (AL) are

not + 6817 = 0 (&7)
hy + 6f17 =0 (A8)
From (A1) and (A2)
ho - hy” =0 (A9)
by + fot - £, =0 (810)

There are six nonzero values of hni and fni. Equations (A7) through (AlO)
are four relations among these constants. The other two relations needed to
solve for the constants come from the boundary conditions.

16




EXPONENTIAL PART CF SOLUTION

To obtain the relations among the constants in the exponential part of
the solution and to determine the exponents, Aj, the function a;g i(?\i)e'g i
is substituted into equations (11) and (12). From equation (17) it can be
seen that for this function aigni(%i) is equal to dni(ki). The coefficient
go+(Ki) is assigned the value unity for ill i. The coefficients aj, which
are fixed by the boundary values for In—, may be canceled from the equations
which result from the above substitution. These equations are

g." g
0 1 + -
e —— e —— - = =
g i g0 g6 0 for n=20 (A11)
& &1 +
——_+ -— = =
N T A g6 &6 0 for n =0 (A12)

ng;_l + (n+ l)g;+1 - {2\ - 1)(2n + l)gn+ =0 for L <n<N (A13)
ng,_, + (n + l)epe, - (2n; + 1)(2n + l)g,~ = 0 for 1 <n <N (Alk)
+ -
gn+l = gn—}-]_ = O (AlB)

It is helpful now to note that equations (Al3) and (All4) have the same form as
the recurrence formulas for two linearly independent sets of functions; the
Legendre polynomials of the first kind, P,, and the nonsingular part of the
Legendre functions of the second kind, Wp_5 (see ref. 3, p- 249). These rela-
tionships are

nPy_.(2A 1) + (n+ 1)P (2n 7 1) - (h 7 1)(en + 1)Py(2A 7 1)

il
(@]

(A16)

aWp_2(2h 7 1) + (n + L)Wy(2n 7 1) - (2A 5 1)(2n + L)W, _ (2N 7 1)

il
(@]

(ALT)

It is to be understood that the upper signs are to be used together and
likewise the lower signs. Because of (Al6) and (A17), it must be possible to
write the gni as linear combinations of the P, and the W,_,.

1]

g (A) = AP (2N - 1) - B'Wy (2 - 1) (A18)

gn (N;) = AP (2N + 1) - BTW,_ (2 + 1) (A19)
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Equations (A18) and (A19) define relations among the gni terms. If the
constants Af, A, B+, and B~ and the A; are known, then it is possible to
generate all of the values of gn .

The assumption that g is unity is equivalent to setting AT equal to
unity. For n <O, Wp_ 1(2%_ + 1) is set equal to zero. From equations (A18
and (A19) and the values of Py, P1, and W, the first few values of gn are
obtained:

go+ = l 1
g, = A7
© } (220)
gl+ = 27\1 -1 - B+
T=AT(2n; +1) - BT )

6}
}_I
il

If equations (A20) are substituted into equations (All) and (Al2), the
following two equations are obtained.

B = B~ (A21)

B = A (A7 + 1) (A22)

4+ - -
Two additional conditions on the constants B , A , and B are obtained from
equation (A15).

Pyo(2hy - 1) - Bwg(eng - 1) =0 (A23)
APy (@A + 1) - BTwy(en; + 1) =0 (A2k)

Equations (A21) through (A24) are sufficient to determine the three constants

BY, A7, and B” and the exponents A -

Substitute equations (A21) and (A22) into equation (A24) and solve for

A
.- A.WN(QXi + 1) (105)
Frp (BN * 1) - AqWgl2hs + 1) 2
From equation (A22)
] N Prrag (20 + 1)
B TN+ e -3 (A26)

T Py, (2N F L) - AgW(2hg + 1)

18




¢

Equations (A23) and (A26) combine to give
Prsa (20 - DB fehg + 1) - APy (26 - Lug(eng + 1)
+ P (2 + Dig(2rg - 1)) =0 (A27)

Equation (A27) is a polynomial which defines the 2N exponents Ai in the
solution (eq. (17)). As proved previously all A; are real. Although equa-
tion (A27) apparently has 2(N + 1) roots, it is found that the coefficients
of the two highest power terms in the polynomial always cancel. This can be
easily seen by substituting the general terms for P, and Wnoa (see, e.g.,
ref. 12) into (A27). Note that there are separate values of B+, B-, and A~
associated with each A;-

In summary, it 1s found that equation (A27) deflnes the exponents %i'
A value of BT , A7, and B™, and a complete set of g, (%1 correspond to each

value of Ag-. The expression for I is
2N

* + -E /N A28

I (&) = £ + byt +zaigni(7\i)e 2 (#28)
i=1

Of the six nonzero constants, fn and hn , four may be considered as deter-
mined in terms of the other twg, due tg equations (A7 ) through (AlO The
two undetermined constants, fy~ and h,~, and the 2N values of a; are deter-
mined by the boundary conditions. Equations (20) ) through (23) are the
necessary 2(N + 1) boundary conditions.
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TABLE I .- NORMALIZED FLUX {-q/tq‘(gL) - +(o)i}

L Double P; | Double Ps I?ig??igﬁ
0.02 0.980579 0.980864 0.980963
.1 . 912691 .915692 .915710
.5 .698888 . 704152 . 704093
1.0 . 550953 .553404 .553867
2.0 .389571 .390058 . 390663
3.0 .301479 .301644 .301770
5.0 .207599 .207657 .206538
10.0 J116727 116745 L114784
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Figure 2.- Normalized flux vs. optical thickness.
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Figure 3.- Dimensionless emission function, cp(g), vs. normalized
optical depth, g/gL.



0.025 i

Double Pg

--—— Double P,

— -— |terative (Ref. (9))
§L= 0.02 all curves

0.020

0.015

0.010

0.005
ayd

0.7 0.8 09 1.0
£/€, '

Figure .- Dimensionless emission function, cp(g), vs. normalized
optical depth, é/éL-

26
NASA-Langley, 1965 A-1008




